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INTRODUCTION

In materials such as concrete or rock, failure occurs by progressive

damage which is manifested by phenomena such as microcracking and void for-

mation. In most engineering structures, the scale of these phenomena, as

compared to the scale of practical finite element meshes, is usually too small

to be modelled and their effect must be incorporated in the numerical analysis

through a homogenized model which exhibits strain-softening.

Strain-softening, unfortunately, when incorporated in a computational

model, exhibits undesirable characteristics. In static problems, finite

element solutions with strain-softening often exhibit a severe dependence on

element mesh size because of the inability of the mesh to adequately reproduce

the localization of strain which characterizes static strain-softening [2].

Furthermore, the solutions are physically inappropriate in that with

increasing mesh refinement the energy dissipated in the strain-softening

domain tends to zero El].

It was first hoped, although in retrospect little practical evidence

existed for this optimism, that in dynamic problems, strain-softening would

not be as troublesome because the inertia of the continuum would alleviate the

instability. Support for this can be found in the snapthrough of an arch; in

this problem the load-deflection curve contains a limit point after which the

force-deflection curve is negative, or softens. A static solution for the

snapthrough is often very difficult, whereas a dynamic solution is relatively

straightforward because the inertia of the structure alleviates some of the_--

difficulties introduced by the negative slope in the force-deflection

relation. The use of strain-softening models has become quite commonplace in

dynamic concrete analysis. For example, in Marchertas et al. [3], strain-

~..................... ..... .................- °.



2

softening appeared to reproduce the salient features of dynamic concrete

response even when severe failure had developed. In the community as a whole,

a certain complacency evolved and little effort was devoted to examining the

basic soundness of these solutions with strain-softening.

Attention was recently focused on the validity of strain-softening models

by the work of Sandler and Wright [4], in which they asserted that strain-

softening models are basically ill-posed because a small difference in load

results in large changes in the response. Sandler's example, which will be

described in more detail later, consists of a one-dimensional rod with the

velocity prescribed at one end in which the material strain-softens. By

increasing the load slightly, a significantly different response was obtained

for the problem. Sandler and Wright also noted a strong dependence of the

solution on the mesh size. They concluded that "a rate independent dynamic

continuum representation of strain-softening is incapable of reproducing

softening behavior in a dynamic simulation of experiments" and then proceeded

to show that in this problem the introduction of viscosity eliminates the

sensitivity of the response to the load. Incidentally, as will be shown later

in this paper, viscous damping is not a panacea for the sensitivity observed

in strain-softening solutions; in certain problems which will be described

herein, sensitivity to mesh size persists even after the introduction of

damping.

In an effort to develop a problem with strain-softening in which the

localization does not occur on the boundary, we investigated two problems:

one, which was presented in Ref. [5], consists of a linear elastic bar joined

to a strain-softening bar. Solutions for this bar were obtained by the method

of images and compared to finite element solutions. These results exhibited

convergence with decreasing element length. A more interesting problem was -- 7

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
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subsequently constructed in which tensile waves are initiated at two ends of a

bar so that strain-softening occurs at the center, Ref. [6]. It was shown

that a solution exists to this problem but that the behavior of the strain-

softening domain is rather unusual: the strain-softening is limited to an

infinitely thin domain, in wihch the strain becomes instantaneously infinite

and in which the energy dissipation is zero.

In order to remedy some of these undesirable features of strain-softening

solutions, Bazant, Belytschko and co-workers [7-8] proposed a new nonlocal

formulation for treating strain-softening. Nonlocal theories have been intro-

duced by Kroner, Kunin and Krumhansl and other [9-12] and developed further by

Eringen and coworkers [12-14]. The basic ingredient of a nonlocal theory is

that the strains are not considered to be local quantities but reflect the

state of deformation within a finite volume about any point. In this respect,

the theory lends itself admirably to problems of heterogeneous media, where

the representation of the microscopic detail of strain-fields and cracks is an

insurmountable task. By dealing with an average of the strain over a finite

domain about each point, the heterogeneity can be neglected, and the

dispersion which occurs in inhomogeneous materials can be modelled without any

artifices.

An obvious question which arises is why one would want to introduce this

complication in order to deal with strain-softening. The reason for this is

that when the constitutive equations are applied locally at points, then, as

will be described here, no dissipation of energy occurs in the strain-

softening process. Thus the material can fail without any permanent

dissipation of energy, which is physically quite unrealistic. By introducing

a nonlocal character into the constitutive law, it is possible to restrict the

localization to a domain of finite size just as is observed experimentally,

4_ - - - - - .
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and to achieve a finite amount of energy dissipation in the strain-softening

domain.

However, we found we could not simply extend the existing nonlocal models

to account for strain-softening [15,16]. The existing nonlocal laws are not

even self-adjoint, so they did not lead to symmetric stiffness matrices. This

lack of symmetry was found to be quite undesirable and was corrected by intro-

ducing an averaging operation over the stresses. More important, it was found

that the strain-softening could only be introduced in the non-local law in a

very subtle fashion, necessitating a split of the constitutive equation into a

local and nonlocal law, with the strain-softening included only in the

nonlocal portion. Numerical experiments indicated that without this

particular combination, numerical solutions were invariably unstable.

The nonlocal law as introduced in Refs. [7,8] offers substantial promise

in providing well-posed solutions for heterogeneous materials that are sub-

jected to damage and hence strain-softening. There are however, substantial

breakthroughs that yet need to be achieved: (1) efficient implementations of

nonlocal laws in the finite element method; (2) design of experimental methods

for identifying the local and nonlocal portions of constitutive laws and (3)

methods for reconciling the bifurcation between local damage, i.e., micro-

cracking, and large scale fracture of a cleavage type in heterogeneous

materials. However, the work reported here has shed light on the questions of

numerical modelling of structures in the failure regime when strain-softening

takes place and provides the basis for future work.

We have organized the material as follows: in Section 1 we describe

several of the generic one-dimensional problems which can be used to examine

the mathematical character of dynamic strain-softening solutions. In Section

2, some finite element solutions are presented to indicate that except in one

i-:--i .-;-: :--,- .--- -7- --.: . 7
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case, the solutions indicate a certain well behavedness. In Section 3, the

non-local continuum law will be described followed by conclusions in Section

4.

DYNAMIC STRAIN-SOFTENING SOLUTIONS

The problem by Sandler and Wright [4] is shown in Fig. 1. The essence of

their argument was that the solutions are very sensitive to the constant Vo,

which gives the maximum prescribed velocity at the left hand boundary, for

certain values aiid that the solution changes markedly and so does not appear

to converge as the mesh is refined. Although the Sandler-Wright stress-strain

law is nice from the viewpoint that it provides a very continuous relationship

between stress and strain in the loading domain, it is not amenable to any

attempts at a closed form solution by d'Alembert methods because of the dis-

persive character of the wave solution even in the loading range. For this

reason, we have limited our studies to piecewise linear prescribed velocities

or stresses and stress-strain laws of the type shown in Fig. 2. Note that the

stress goes to zero as the strain becomes large on the strain-softening sides

of the law (usually the tensile side).

The analytic solutions to this problem are developed next. The salient

characteristic of the analytic solution is the appearance of an infinite

strain on the boundary once the'strain c is exceeded. The construction of

the solution for this case will follow that described by Bazant and Belytschko

[6] for a similar problem. As will be seen, when strain-softening occurs,

then the strain immediately localizes and reaches infinity within a time

interval that approaches zero. Therefore, the solution can be generated by

adding an image wave which cancels the incident wave so that the strain-

. . . . . .. . . .

.. . . . **** .*,*~ . * *.*. . . . . . . . .
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softening point is instantaneously converted to a free boundary.

The governing equations can be stated as follows

O'x =PU, tt  ( .)" ''.
(1.1)"

't= E(e)u,'xt E(e),t (1.2)

where a and e are the stress and strain, u the displacement and subscripts

preceded by comas denote differentiation; p is the density and E the tangent

modulus. We will consider two types of boundary conditions on the left-hand

side, x = 0:

velocity condition: u,t(O, t) = -vo< t > (1.3)

traction condition: a(0, t) = 0o< t > (1.4)

where the symbol < f > designates fH(f), where H is the Heaviside step

function. The velocity boundary condition will be considered first. The

right-hand boundary is assumed to be sufficiently far so that the rod can be

considered semi-infinite.

Note that prior to the onset of strain-softening, the problem is governed

by the standard one-dimensional wave equation

1 3i* (1.5)U, xx 7 Ut

c

where

• ......................... ............ .
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2 E.

c2 = - (1.6)
p

Once the strain-softening regime of the material is attained, then at those

points the governing equation is

E + U, 0 (1.7)

2_ E (1.8)
p

and E vanishes once ep is attained. Equation (1.7) is elliptic in space-time,

which is quite peculiar in that no information can be transmitted from a point

which is strain-softening to adjacent points. Hadamard [17] commented on this

in 1903 and he claimed that the negative character of the square of the wave-

speed precluded its applicability to real materials since the wave speed would

then be imaginary. However, the case of c = 0 has been treated extensively by

Taylor [18], who noted that for perfectly-plastic solids the deformation is

localized at the point of impact. Wu and Freund [19] have recently presented

a lucid description of these localization phenomena and investigated the

effects of strain-rate sensitivity and heat transfer on the localization.

However,.the analyses were limited to the case where in the limit c = 0 = .

We will here consider the strain-softening situation using the concepts

developed in [6]. The present situation differs from [6] only in that the

stress wave is a ramp rather than a step-wave, but it will be found that all

of the singularities associated with a step input remain.

The procedure of constructing a solution consists of three steps:
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1) it is shown that the boundary between the strain-softening and

elastic domain cannot move, so the strain-softening domain is limited to a

point;

2) this is shown to imply the strain and strain-rate in the strain-

softening points must be infinite;

3) since the strain-rate is infinite, for the class of materials

considcred here in which a + 0 as e + -, the stress can instantaneously be

considered to vanish at the points which strain-soften.

The last conclusion enables the solution to be easily constructed by

d'Alembert methods by simply adding a wave to satisfy this zero stress

condition.

For the prescribed velocity problem, let tI be the time when the left-

hand end, x 0, reaches c and begins to strain-soften; tI is given by

2cE
t p (1.9)

and the solution prior to the onset of strain-softening is given by

x 2 "U < (t > (1.10)

v

c t c (1 11)

Strain-softening first occurs at x = 0. We now show that the boundary

between the elastic and the softening interface cannot move. For this

purpose, the usual formula for velocity V of discontinuities is used (a

development is given in [6])
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+ - V2 (E +  E') (1.12)

where the superscript + and - designate the state variables to the right and

left of the discontinuity, respectively. If the material is strain-softening

behind the interface and not yet before it, it follows that e- > c and
+2
S a. Substituting these inequalities into Eq. (1.12), it follows that V2

must be negative or zero; since the former assumption would yield an imaginary

velocity for the discontinuity, only V : 0 is tenable, and it can already be

concluded that

+ a (1.13)

To show that the strain and strain-rates must be infinite at a point

which strain-softens, a solution is constructed in the strain-softening

domain, which is considered to be 0 4 x 4 s where s 0. It can be seen that

u = u + [a (t - tI ) + E (l.14a)

v 2-
p

L < (t 2 _ A> (1.14b)

satisfies the governing equation in the strain-softening domain, (1.7). This

solution, (1.14), is now matched to a solution in the elastic domain

v 2
: _.< (t -x + f(&) H (t - t I ) (1.15)

,-..°-__.~ ~ ~ ~ ~~~~~~... , . .... -. . . . .. .., -.. . . .. . .... _ . .• .-. . .. ..
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Figure 1. Sandler-Wright Problem [4]; stress-strain law In [4] is

c- Eo0 exp(-u/c. ), CO.0.002;

u. t(O. t) v 0 El -cos(xt/t 0)]12 for t <t

U, t (0 t) v= for t > to. to 2 x 10- sec.

Figure 2. Stress-strain law with strain-softening and nomenclature.
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attempted in multi-dimensional problems.

CONCLUSIONS

The following are the major conclusions of the work summarized here:

1. Analytic solutions can be established for certain simple problems which

include strain-softening materials. The solutions exhibit singular strain

distributions but the rate of convergence of finite element solutions is quite

rapid.

2. In the spherical wave problem, numerical solutions of strain-softening

models exhibit severe dependence on element mesh size. This is particularly

true of field variables inside the surface of initial strain-softening.

Nonlocal models provide rapidly converging solutions to this problem.

3. A major difficulty of local laws with strain-softening is that the energy

dissipation vanishes. Thus, the failure process is not accompanied by energy

dissipation, which is physically unrealistic.

4. Nonlocal laws provide a means for obtaining rapid convergence and finite

energy dissipation in failure. However, the technology for efficiently

implementing these techniques in large-scale, multi-dimensional problems

remains to be developed.

*. .-~~ . .. . ,~
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This type of composite local, nonlocal model has been termed an imbricate

continuum by Bazant [8] because it can be represented by an overlapping mesh

of finite elements.

The governing equations for this model can be summarized as follows

= E' E can be negative (3.4)

t = E e t E > 0 (3.5)

Eq. (3.3) + 6 (3.6)

S = (i - y) a + y T 0 < y < (3.7)

S,x Putt (3.8)

Figure 9 gives an indication of the rate of convergence for the nonlocal-

model with strain-softening for the problem in Fig. 1. Here y = 0.1, and I h

is 0.2 of the total length of the bar. Results are shown for the cases where

the number of elements N = 5, 15, 45, and 95 at six different times. It can

be seen that for more than 15 elements, there is little change in the

distribution of the mean strain Z at various times. The local strain

converges less rapidly but is not ill-behaved. By contrast, in the local

formulation, the strain becomes larger and larger at the midpoint as the mesh

is refined.

The solutions presented in Fig. 9 are taken from Ref. [7) and were

obtained by taking a discrete form of the nonlocal continuum, which consists

of several overlapping series of elements. This process has not yet been

;.. °.-..... • .>:.-~ ~ ~~~.. -..-.. . . .. -.. .;. - . ° . . -. -. - ..-. :--....,...-........-.....-.........
• -. . . *.... .
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x+1/2 x+t12
i(x) I J ( + s) w(s)ds au (x + s) w(s)ds (3.1)

x-1/2 + s s

The stress-strain law is then written in terms of , and its rate form is

0,t(x) = E(Z) E,t(x) (3.2)

Although the classical nonlocal theory directly uses the stress a in the

momentum equation, Eq. (1.1), the resulting form is not self-adjoint

[15,16]. This leads to the existence of spurious, zero-energy modes of

deformation for certain weight functions w(x): deformations which are

associated with vanishing strains E and hence do not generate any stresses.

These spurious modes have been found for constant weight functions w(x). .-

To remedy this difficulty the stress a is processed through an operator

identical to (3.1)

x+1/2
a(x) = J a(x + s) w(s)ds (3.3)

x-1/2 -

and the resulting stress is used in the equation of motion, Eq. (1.1). Once

Eq. (3.3) is added to the process, spurious modes are eliminated even for

constant weight functions, w(x).

Even with a self-adjoint form of the nonlocal laws, solutions are

unstable for strain-softening materials for constant weights w(x). So far,

only by combining a local and nonlocal law has stability been achieved [16, ..-

7]. By superimposing two distinct field systems, one local and without

strain-softening, the nonlocal one with strain-softening, stability is

achieved in a model which exhibits a negative slope for a finite segment.
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should be stressed that all of these comments apply only to materials in which

the stress across the surface tends to zero as the strain becomes large; if

the stress tends to some nonzero value, then the response of the material is

quite different and the dissipation no longer vanishes.

To achieve finite energy dissipation during failure by strain-softening,

the artifice of imposing a certain minimum element size which depends on the

aggregate size (crack band model) has been proposed [1]. However, this

artifice is quite inconvenient in practical analysis, since it requires the

element size to be dictated by a material constant rather than by the size of

the structure.

In order to avoid this difficulty, we have investigated the possibility

of using nonlocal constitutive laws in which the stress is related to the

weighted average of the strain in a neighborhood of that point. This is in a

sense a special case of the theory of existing (or classical) nonlocal

continuum theories [9-14]. However, it was found to be necessary to make two

generalizations of this theory in order to obtain realistic results in the

strain-softening regime: (1) the existing nonlocal theory is not self adjoint

and hence possesses certain spurious zero energy modes of deformation; (2) in

order to achieve stable solutions even in one-dimension in the presence of

strain-softening with a constant weight, a material law consisting of a

combination of a local law without strain-softening and a nonlocal law with

strain-softening was required.

We will now sketch the essential features of this nonlocal theory for

one-dimensional problems. Details of development may be found in Refs. [7-8].

The fundamental assumption in a nonlocal theory is that the nonlocal

strain i at a point is a weighted average of the strains in a neighborhood of

that point. Thus

-". .... .... ... . . . .. •. . . . . . .. . .- .
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softening diagram in Fig. 2 pertains to the relation between pressure and

dilatation. The following constants were used; bulk modulus K = 1.0,

density p = 1, shear modulus G = 1.E-6, y 1.0, ef 5.0. Damping was added

so that for the coarsest mesh, the maximum element frequency was damped at 40%

of critical. A unit step function is prescribed for the radial stress on the

outside surface.

Comparing results in Figs. 8a and 8c one can see in this case a striking

difference in the results within the strain-softening domain, which is the

domain to the left of the transition point. As can be seen from Fig. 8c, as

the mesh is refined, several points of localization develop. However, the

displacement distribution at any given time appears to converge with mesh

refinement. This behavior was found to be independent of the presence of

damping, so daming did not eliminate this pathology of the solution. On the

other hand, the nonlocal laws provided rapidly converging solutions.

NONLOCAL CONTINUUM FOR STRAIN-SOFTENING

The major shortcoming of strain-softening models for representing local

damage is that the localization phenomenon associated with strain-softening

results in no dissipation of energy. For example, in one-dimensional

problems, the strain-softening process is limited to a single point and since

the rate of work per unit length is finite, the amount of work dissipated in

the strain-softening domain vanishes. Analogously, in three-dimensional

problems, strain-softening localizes to a surface, and since the work per unit

volume is again finite, the total dissipation due to the separation across the

surface is finite. Thus, no energy is required to separate the material along

the surface of strain-softening, which is physically quite unrealistic. It

* . .....X W%.~ ***~~ *** * .. -. . ~ ... * .* ** -. *. ***--.*

. * *. . . . . .. . . . . . .
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center, the formation of additional strain-softening surfaces is possible. As

a result, this problem has considerably more structure than the one-

dimensional problems.

FINITE ELEMENT SOLUTIONS

Finite element solutions for the Sandler-Wright problem, Fig. 1, with the

material law given in Fig. 2 are shown in Fig. 6. Solutions were obtained

with meshes of 50, 100 and 200 elements. Linear displacement, constant strain

elements and lumped mass matrices were used. Time integration was performed

with the central difference method.

The finite element solutions are compared with the analytic solution

given in the previous section. It can be seen that the agreement is quite

good and improves with mesh refinement, although the instantaneous drop in the

velocity which is a result of the strain-localization cannot be reproduced

well even with the finest mesh.

The rate of convergence is shown in Fig. 7. Here the error e is defined

by

jt o L  2 .:
2= t [VFEM ANA)  dxdt

0 0

As can be seen from Fig. 7, the rate of convergence is approximately h1 .46 for

the velocity. This is only slightly less than the theoretical value of h2

expected for linear solutions by these methods, so the sensitivity to meshing

which Sandler and Wright pointed out is not evident.

Figure 8 shows the finite element solutions for the spherical wave

problem given in Fig. 5 with strain-softening. In this solution, the strain-

* . .. O +. - .. . .- . . . .. -. . , ,* =. .o - += - ' O ' . o o ... .... . . . .. ,.., , . .'

, ,a~. . . . . ... -a l~m il . -.. ...a ~.am lm. .m.. . . . . . ... . .. ...
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ends of the bar, so that tensile waves are generated at the two ends. These

propagate to the center; when they meet at the center, the value of the stress

there becomes twice the applied stress, so strain-softening is possible at

this midpoint even though it did not occur at the boundaries.

The solution is given in [6] for prescribed velocities that are step-

functions in time. As in the previous case, localization occurs at the

midpoint where the strain becomes infinite. The solution is symmetric about

the midpoint, x = 0 and is given in [6]; for the left half (x < 0 and

0 t < 2L/c)

u = v < t x + L - V < t L -c x > (1.22a)

0Vx+o L -x)
c [H (t x L H (t * 4 < ct -L > 6(x)]

(1.22b)

where 6(x) is the Dirac delta function.

Another problem we have considered is a sphere loaded on its exterior

surface, see Fig. 5. This problem is not easily physically realizable with a

tensile load; however, It is physically meaningful with a compressive load

where strain-softening also occurs in some materials, (although the stress

usually does not vanish as the dilatation becomes large).

The interesting feature of this problem is that when the load is a ramp-

function in time, prior to the onset of strain-softening at an interior

surface, a stress wave can have passed through this surface. Since the wave

which is beyond the strain-softening surface is amplified as it passes to the
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is often intended to represent microcracking, which is a dissipative

process. It will be seen that in spite of the mathematical questions, the

behavior of finite element solutions is not altogether pathological.

Other Remarks:

1) The solution is puzzling when the ramp loads Eqs. (1.3) and (1.4) are

replaced by step functions. According to the present analysis, if a > C E,
0 p

then the boundary point should reach strain-softening instantaneously and no

wave should reach the interior.

2) The solution does not depend on the specific functional dependence of

stress on strain in the strain-softening portion, provided that the stress

vanishes as the strain becomes large.

One conceptual difficulty of the Sandler-Wright problem is that strain

softening occurs only at the boundary, which confuses the role of the boundary

condition and the strain-softening. For this reason we have attempted to

construct problems in which the strain-softening occurs within the domain of

the problem.

The strictly one dimensional problems of this type are shown in Fig. 3

and 4. The first consists of an elastic rod joined to a rod with a strain-

softening material [5]. We will not give the closed-form solution but only

explain its major features. If the applied stress is sufficiently large, then

strain-softening is initiated at the interface between the two materials. The

strain localizes at this point, and as in the previous problem, the stress

vanishes instantaneously at the interface. The solution can thus be viewed as

a case in which a body separates into two.

The second problem, given in [6), consists entirely of a strain-softening

material. Equal and opposite velocities vo (or forces) are applied to the two*. .- * .

.. . .. . . .. . . . . . .. . .... ... . . . . . .. . . . . . .. . . . . . .
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buckling problem is not completely analogous: in a dynamic buckling problem,

any stress may be prescribed and the excess stress will generate

accelerations, which depend on the magnitude of the stress, whereas in this

problem, the solution is completely independent of the value of the prescribed

stress once the failure stress is exceeded. Nevertheless, this model does

appear to represent a physically meaningful situation: the behavior of a rod

in which the material can sustain a limited tensile strain before it fails,

and the solution appears reasonable.

From a mathematical viewpoint, the character of the solution procedure

presents some other dilemmas, First of all, we consider As to be a segment in

developments of Eq. (1.19), but it is only a point. Second, since the strain

softening portion is localized in a one dimensional solution to a point and

analogously, in a two dimensional solution, to a line, within conventional

theories for partial differential equations, the body would no longer be

considered to be a single body: instead the effect of strain-softening is to

subdivide the initial body by introducing interior boundaries. Although

mathematical theories for such partial differential equations are not known to

us at the present time, there is no reason to arbitrarily exclude such

phenomenological models.

Another difficulty posed by this model is that the energy dissipated in

the formulation of the strain-softening region is not finite but instead

vanishes. This can be seen from the fact that the only irreversible energy

loss in the material shown in Fig. 2 occurs in the strain softening domain.

Because the strain-softening domain in a one dimensional problem becomes a

point, and since the energy dissipated per unit length is finite, the total

energy dissipated vanishes. This tn fact is a more serijus difficulty than

the mathematical difficulties, for the strain-softening constitutive equation

~~~~~~......................-,-.,,-. .. :.......... a.., ,...... ,-. ,. . ..• ... -•:.-. ..
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f(€) = c H(t - t - ) + V < t - > (1.20a)
p 1 c 0C

v 2f" C- > + - < {t -tI  x > (1.20b)
p fI{ = 2p 1 2

Hence the complete solutions is

v0v 0 X 2u -t > + C c <t - I-- <t p- > + -< (t -t I  >

2 p 1 c +C<tt 1 ..

(1.21a)

V
u t = - .--H (t - t + pC H(< -t

(1.21b)

This solution will subsequently be compared to finite element solutions.

The solution for the traction condition, Eq. (1.4), can be found by

replacing v0 by aoc/E. However, in the stress boundary form of this problem

Eq. (1.4) the introduction of the image at the strain-softening point poses a

difficulty since the first point to strain-soften is on the boundary to begin

with. Thus, in one sense it can be said that this boundary must satisfy two

different boundary conditions: Eq. (1.4) and a = 0.

This contradiction can only be reconciled by requiring the second type of

boundary condition (that the stress vanishes) to take precedence. This notion

of a boundary condition depending on the result of the solution is not totally

unexpected in an analysis of a continuum which fails. For example, in a buck-

ling problem with unstable postbuckling behavior, the prescribed stress would

also be limited by the capacity of the structure. Yet the situation in the
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t - - t (1.16)
c 1

where the second term is a wave emanating in the strain-softening region which

will be used to match the displacements and stress-conditions across the

interface. Note that from Eq. (1.14a), it follows that

=au - tI )a(t - t)+ p (1.17)

If the two displacement solutions, Eqs. (1.14a) and (1.15) are now

matched across the interface x = s, then

- vo  2
u + [a(t - t1 ) + c]S = - < (t - > + f(&) (1.18a)

= t (1.18b)

Eliminating a from Eqs. (1.17) and (1.18) yields

" TI[( _0 <t "s > " u(1.19).

It can be seen that as s + 0, e + 0 instantaneously, which through Eq. (1.13)

implies a = 0. The function of f(E) is then found by this condition. Using

the displacement field of Eq. (1.15) and letting a , and hence e , vanish, we

find

......................-.... . . . . . .
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